Rank 3 permutation characters and maximal subgroups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank 3 Permutation Characters and Maximal Subgroups

Let G be a transitive permutation group acting on a finite set E and let P be the stabilizer in G of a point in E. We say that G is primitive rank 3 on E if P is maximal in G and P has exactly three orbits on E. For any subgroup H of G, we denote by 1H the permutation character (or permutation module) over C of G on the cosets G/H. Let H and K be subgroups of G. We say 1H 6 1 G K if 1 G K − 1 G...

متن کامل

COUNTING DISTINCT FUZZY SUBGROUPS OF SOME RANK-3 ABELIAN GROUPS

In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...

متن کامل

Computing the maximal subgroups of a permutation group I

We introduce a new algorithm to compute up to conjugacy the maximal subgroups of a finite permutation group. Or method uses a “hybrid group” approach; that is, we first compute a large solvable normal subgroup of the given permutation group and then use this to split the computation in various parts. 1991 Mathematics Subject Classification: primary 20B40, 20-04, 20E28; secondary 20B15, 68Q40

متن کامل

Endomorphism Rings of Permutation Modules over Maximal Young Subgroups

Let K be a field of characteristic two, and let λ be a two-part partition of some natural number r. Denote the permutation module corresponding to the (maximal) Young subgroup Σλ in Σr byM . We construct a full set of orthogonal primitive idempotents of the centraliser subalgebra SK(λ) = 1λSK(2, r)1λ = EndKΣr (M ) of the Schur algebra SK(2, r). These idempotents are naturally in one-to-one corr...

متن کامل

p-GROUPS WITH MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF RANK 2

Let p be an odd prime number and G a finite p-group. We prove that if the rank of G is greater than p, then G has no maximal elementary abelian subgroup of rank 2. It follows that if G has rank greater than p, then the poset E(G) of elementary abelian subgroups of G of rank at least 2 is connected and the torsion-free rank of the group of endotrivial kG-modules is one, for any field k of charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2013

ISSN: 0933-7741,1435-5337

DOI: 10.1515/form.2011.106